Effect of hopping regime, cultivar, and yeast on terpene alcohol content in beer.

Daniel C. Sharp, Andrew Molitor, Tom H. Shellhammer
Oregon State University Department of Food Science and Technology

Institute of Brewing and Distilling
Young Scientist Symposium
Chico, California
April 21st-23rd, 2016
Basic Yeast/Hop Interactions

- Stripping of volatiles
 - CO$_2$ production
 - Adsorption
 - Partitioning (e.g. foam)

- Solubility changes
 - Ethanol increase
 - Aroma masking
 - Direct Biotransformation

Sesquiterpene loss during fermentation (King and Dickinson, 2003)

caryophyllene humulene
Yeast modification of hop derived compounds

- Carbonyls reduced to hydroxyls (Mielgard 1986)
- Ester hydrolysis and trans-esterification (Peacock 1981)
- Hop degradation products to fruity esters (Nielsen 2009)
- Cysteine conjugates are transformed into thiols (Nizet 2013)
- Monoterpene alcohols are isomerized (King 2003)
- Glycosidically bound aroma precursors are hydrolyzed (Kollmannsberger 2006)
Glycosides

- Sugar bound molecules
- Water soluble
- Non-volatile
- Used for storage and transport in plants

- Important source of aroma in wine
- Found in hops

Linalyl Glycoside (non-volatile)
Glycoside Hydrolysis

β-Glucosidase optimal pH

Other terpenoid aglycones
- Geraniol
- Nerol
- β-citronellol
- α-terpineol
- Terpin-4-ol
- Z-3-hexanol
- 1-octanol

(Kanauchi and Bamforth, 2012)
Objectives

1. Determine range of β-glucosidase activity in brewing yeast
2. Monitor hydrolysis throughout fermentation
3. Determine effect of yeast β-glucosidase activity on aglycone content in beer
4. Determine effect of hopping regime on glycoside extraction
β-Glucosidase Activity: Yeast Screening
Yeast β-Glucosidase Activity Analysis

\[
\text{4-MUG} \quad + \quad \text{Yeast} \quad \rightarrow \quad \text{Exλ = 365nm Emλ = 445nm}
\]

Yeast Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brett</td>
<td>4</td>
</tr>
<tr>
<td>Lager</td>
<td>6</td>
</tr>
<tr>
<td>Wine</td>
<td>35</td>
</tr>
<tr>
<td>Ale</td>
<td>26</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
</tr>
</tbody>
</table>
Yeast Screening: β-Glucosidase Activity Results

Brewing Yeasts

- **Cell Associated**
- **Extracellular**
- **Total**

Specific Activity (U L^{-1} O.D_{605}^{-1})

Ale
Brett
Lager
β-Glucosidase Activity: Bench top trials
When does hydrolysis occur during fermentation?

Bench Top Trials
- 1 L wort (12P) @ 18 C, 25 ppm iso
- Octyl-glucopyranoside → 100ppb 1-octanol

Treatments
- Low enzyme(-) and high activity(+) ale yeast ferments
- Excess (>250 U/L) purified Bgase (calzyme)
- Control (no enzyme)

Monitor 1-octanol over time via SPME-GC-MS
When does hydrolysis occur during fermentation?

Octyl-glycoside → Hydrolysis → 1-Octanol

Hydrolysis of octyl-glucopyranoside

Percent

0 20 40 60 80 100

Hours

0 24 48 72 96 120 144 168 192 216 240

- Enzyme
- ale(low)
- control
- ale(high)
Yeast β-glucosidase activity and terpene alcohol content
Does increased yeast β-glucosidase activity increase aglycone content in beer?

- Hopping
 - Simcoe Whirlpool (25 min)
- Treatments
 - 12 different brewing yeasts
 - Excess enzyme
 - Control-no enzyme

Bench Scale Ferment: 1L, 12°P wort @ 18°C

SPME GC-MS Volatile Analysis (n=2)
- Linalool, Geraniol, Nerol, β-citronellol, α-terpineol, Terpin-4-ol, Z-3-hexanol, 1-octanol* (octyl glycoside)
Does increased yeast β-glucosidase activity increase aglycone content in beer?

Mean geraniol concentration by SPME

Mean β-citronellol concentration by SPME

Mean linalool concentration by SPME

Mean nerol concentration by SPME
Glycoside Extraction by Different Hopping Regimes
Does hopping regime influence glycoside extraction?

- Hopping
 - Kettle boil (60 min)
 - Whirlpool (25 min)
 - Dry hop (72 hours @ 18°C)
- Cultivar
 - Simcoe, CTZ, HHA, Centennial
- Enzyme
 - β-glucosidase 72 hours
 - Control-No Enzyme

Benchtop boils: 2L, 12°P wort (n=3, N=72)

SPME GC-MS Volatile Analysis (n=2, N=144)
- Linalool, Geraniol, Nerol, β-citronellol, α-terpineol, Terpin-4-ol, Z-3-hexanol, 1-octanol* (octyl glycoside)
Does hopping regime influence glycoside extraction?

- **Hopping**
 - Kettle boil (60 min)
 - Whirlpool (25 min)
 - Dry hop (72 hours @ 18C)
- **Cultivar**
 - Simcoe, CTZ, HHA, Centennial
- **Enzyme**
 - β-glucosidase 72 hours
 - Control-No Enzyme

SPME GC-MS Volatile Analysis (n=2)
- Linalool, Geraniol, Nerol, β-citronellol, α-terpineol, Terpin-4-ol, Z-3-hexanol, 1-octanol* (octyl glycoside)
Does hopping regime influence glycoside extraction?

Concentration Linalool by SPME

No significant difference between enzyme (E) treatments and no enzyme (NE) treatments.
Summary

• Brewing yeast exhibit wide range of glycosidase hydrolysis activity.
• Maximum hydrolysis occurs within 3 days of primary fermentation.
• Aglycone content did not increase in enzyme treated beers.
• No strong relationship between activity and increased aglycone content.
Glycoside content varies by cultivar

Total [terpene alcohol aglycone] from spent hop extracts

Cultivar

Vollmer and Shellhammer
Isomerization of terpenoids during fermentation

King and Dickinson, 2003
Thank You

Photo credits: Lynn Ketchum and John Castle
References

